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The author introduced in an earlier paper a modulus of smoothness for non-
periodic functions based on an algebraic addition � defined on [&1, 1]. In this
paper the Steklov functions and an equivalent K-functional are given. Moreover, a
characterization of best approximation by algebraic polynomials and the equiv-
alence between the algebraic modulus and the Butzer�Stens modulus, introduced
by the Chebyshev translation method, are shown. � 1997 Academic Press

1. INTRODUCTION

Nikolski@$ showed in 1946 that the approximation of continuous func-
tions defined on a finite interval, i.e., [&1, 1] by algebraic polynomials, is
better near the endpoints \1 than inside of [&1, 1] and therefore is not
uniformly good over the whole interval. The endpoints \1 therefore play
an exceptional role. It is well known that the rate of algebraic approxima-
tion to a function f # C[&1, 1] cannot be characterized in terms of the
classical modulus

|( f ; $)= sup
|h|�$

sup
x, x+h # [&1, 1]

| f (x+h)&f (x)|. (1.1)

This is basically due to the fact that the ordinary translation x+h does not
cover the situation at the endpoints.

In [7] the translation x+h of the modulus (1.1) was replaced by the
weighted addition

x�h :=x - 1&h2+- 1&x2 h, x, h # [&1, 1], (1.2)
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which is an inner operation on the unit interval E :=[&1, 1], i.e.,
�: E_E � E. The forward difference operator for functions f : [&1, 1] � R
can then be defined as

(2h f )(x) :=f (x�h)&f (x) for all x # [&1, 1]

and the difference operator of r th order is given by composition 2r
h=

2h b } } } b 2h (r times).
The concept of measuring smoothness via the difference operator 2r

h has
been introduced in [7] for the space C[&1, 1] and for the weighted space
Lp

. [&1, 1], p # [1, �), whereby the former denotes the set of all con-
tinuous functions f : [&1, 1] � R endowed with the norm

& f &� := sup
x # [&1, 1]

| f (x)|

and the latter is the set of all measurable functions f : [&1, 1] � R for
which the norm

& f &p, . :=\|
1

&1
| f (x)| p dx

.(x)+
1�p

, .(x)=- 1&x2,

is finite. For the sake of abbreviation let us set

X={C[&1, 1],
L p

. [&1, 1],
p=�
p # [1, �)

and &v&X={&v&� ,
&v& p, . ,

p=�
p # [1, �)

.

It was shown that the modulus of smoothness

wr
.( f ; $)X := sup

|h|�$
&2r

h f &X , $ # [0, 1], (1.3)

is well defined for all f # X.
One of the goals of this paper will be to prove that the Jackson and

Bernstein assertions with respect to the approximation by algebraic poly-
nomials are equivalent, i.e., the characterization

En( f )X=O(n&:) (n � �) � wr
.( f ; $)X=O($:) ($ � 0)

holds true for all f # X and : with 0<:<r, where En( f )X=infpn # P n & f&pn&X

and Pn denotes the set of all algebraic polynomials of degree n.
Let us very briefly touch on recent developments. It was A. F. Timan in

1951 [11] who first proved that |( f ; $)=O($:) (0<:<1, f # C[&1, 1])
is equivalent to the fact that there exists a sequence [ pn] of algebraic
polynomials of degree n which satisfies

&(.+n&1)&: ( f&pn)&�=O(n&:) with .(x)=- 1&x2.
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Unfortunately, the corresponding result for weighted and unweighted Lp

approximation does not hold true, a fact which was pointed out by
V. P. Motorni@$ (1971) [10] and R. DeVore [3]. Another approach con-
sisted in manipulating the modulus of smoothness in order to characterize
the rate of algebraic approximation. This was solved in different ways and
in different spaces by P. L. Butzer and R. L. Stens [1, 2], K. G. Ivanov
[8, 9], and Z. Ditzian and V. Totik [5].

The translation defined in (1.2) is similar to the translation
x+- 1&x2 h introduced by Ditzian and Totik [5]. The increment
- 1&x2 h of the Ditzian�Totik translation varies together with x and
becomes smaller if x is near the endpoints. This also holds true for x�h
if h is small. But in contrast to x+- 1&x2 h the double weighted transla-
tion (1.2) always remains inside of the unit interval [&1, 1].

Although the difference between x�h and the Ditzian�Totik translation
is only O(h2) for h � 0, the modulus (1.3) behaves differently from the
Ditzian�Totik modulus. It was found that (1.3) is not well-defined for
unweighted Lp spaces on [&1, 1] ( p # [1, �)), whereas the Ditzian�Totik
modulus is. This aspect will be discussed in more detail in Section 5.

Our approach is based on the elementary properties of the algebraic
addition and of the modulus which have been investigated in [7]. The
main results of [7] will be reviewed in Section 2.

Whereas the paper [7] is mainly concerned with the introduction of the
wr

. modulus, this paper deals with applications. In Section 3 Steklov func-
tions are introduced via the algebraic addition � . It will be seen that
these Steklov functions possess properties similar to those of the classical
Steklov functions. As the differential operator D we use Df :=. } f $ for
f # AC[&1, 1]. The power Dr is defined by composition D b } } } b D r times.

Section 4 investigates a suitable K-functional which is defined by means
of the differential operator Dr. One of the aims of this paper is to show that
K-functional and modulus wr

. are equivalent. We are able to give values to
the constants in the inequalities.

Finally, it will be shown that the algebraic modulus w2r
. of even order is

equivalent to the Butzer�Stens modulus |r
T , introduced by the Chebyshev

translation method [1, 2].

2. PROPERTIES OF wr
. MODULI OF SMOOTHNESS

Before we can work with the modulus, we have to recall the basic
properties of the addition � (for more details see [7]). � is com-
mutative, 0 is the neutral element, and &a is the inverse of a. So it is con-
venient to define the subtraction by a � b :=a� (&b)=a - 1&b2&
- 1&a2 b for all a, b # [&1, 1]. ([&1, 1], � ) is not a group, because the
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associative law is missing. But the associative law is fulfilled on certain sub-
intervals of the unit interval E :=[&1, 1].

Definition 2.1. Let us denote as Eh , h # E=[&1, 1], the following
subintervals

Eh :=[&1, 1]h :={[&1, 1 � h]
[&1�h, 1]

for h�0
for h<0

.

Then the associative law (a�h)�b=a� (h�b) holds true for every
a, b # Eh . Moreover, there are three remaining cases, the only difference is
that a minus sign appears at different positions:

(a�h)�b=&a� (h�b) for a # Eh , b # E"Eh ,

(a�h)�b=a� (h � b) for a # E"Eh , b # E&h ,

(a�h)�b=&a� (h � b) for a # E"Eh , b # E"E&h .

In [7] the associative law for n summands

( } } } ((a1�a2)�a3)� } } } )�an (2.1)

was investigated for n�3. It was shown that the parentheses in (2.1) may
be omitted without ambiguity if

a1 , ..., an # _&
1

(n&2) - 2
,

1

(n&2) - 2& . (2.2)

It was pointed out in [7] that the difference operator (2r
h f )(x) for r�2

manifests a completely different behavior for x near the endpoints \1 than
the corresponding classical difference operator.

Theorem 2.2. Let r # N, f : [&1, 1] � R and h # E :=[&1, 1]. Then the
rth difference operator satisfies

(2r
h f )(x)=(&2)r&1 } (2h f )(x)

for each x # E"Eh .

Observe that

E"Eh={[- 1&h2, 1],
[&1, &- 1&h2],

h�0
h<0

4 MICHAEL FELTEN
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and these two intervals consist of points which lie near \1. Therefore the
order of the difference operator is reduced to one if x is near the endpoints.
This is due to the fact that the associative law is missing around the
boundaries. In contrast to the classical moduli of higher order it turns out
that in wr

.( f ; $)X the order varies near the endpoints of [&1, 1]. This
shows the difference between 2r

h and the corresponding difference operator
of the periodic case. Therefore a reduction to the periodic situation by
some cosine substitution is not possible.

It should be taken into consideration that the starting point in [7] was the
Ditzian�Totik translation x+- 1&x2 } h, where the increment varies together
with x and becomes smaller if x is near the endpoints \1. The same holds true
for the algebraic addition. But now the order of the difference operator, too,
varies together with x and becomes smaller if x is near the endpoints. This is
altogether in keeping with the fact that the algebraic approximation near the
endpoints is better than inside the interval [&1, 1].

In the next section the following properties of the algebraic translation
x [ x�h will be of interest for Steklov functions.

Theorem 2.3. Let {h : [&1, 1] � [&1, 1] defined as {h(x) :=x�h for
h # [&1, 1].

(i) For the restrictions {h on Eh and E"Eh respectively, the following
properties are satisfied :

{h : Eh � E&h , {&1
h ={&h ,

{h : E"Eh � E"Eh , {&1
h ={h .

{h is on the above subintervals bijective and has the mentioned inverses.
(ii) {h is on (&1, 1) continuously differentiable and

{$h(x)={
1�{h(x)

1�x

&
1�{h(x)

1�x

for x # Eh

for x # E"Eh

.

By application of Theorem 2.3 (i) one can show that the inequality

& f ( v�h)&X�21�p & f &X (2.3)

holds true. As a consequence we get the following two estimations:

wr
.( f ; $)X�(2 } 21�p)r } & f &X ,

(2.4)
wr+s

. ( f ; $)X�(2 } 21�p)s } w r
.( f ; $)X .

5BEST ALGEBRAIC APPROXIMATION



File: 640J 303506 . By:DS . Date:20:03:97 . Time:12:58 LOP8M. V8.0. Page 01:01
Codes: 2356 Signs: 1022 . Length: 45 pic 0 pts, 190 mm

For later use we need an algebraic multiplication. In [7] x : N0 _E � E
was defined by

n x x :=x� } } } �x

n times

, x # E,

for every n # N and n x x :=0 for n=0. It was proved that

|n x x|�n } |x| (2.5)

holds true.
The next two theorems will be needed for Steklov functions. The proofs

can be found in [7].

Theorem 2.4. Let n, r # N, r�2, and $* :=1�((nr&1) - 2). Then

(2r
n x h f )(x)= :

n&1

k 1=0

} } } :
n&1

k r=0

(2r
h f )(x� (k1 x h)� } } } � (kr x h))

holds true for every x # [&1, $*], h # [0, $*] and every x # [&$*, 1],
h # [&$*, 0].

Theorem 2.5. Let f # L1
.[&1, 1], n # N and x # [&1�(n - 2), 1�(n - 2)].

The multiplication x posseses the following properties

(i) (n x x)$=n }
1� (n x x)

1�x
,

(ii) |
n x x

0
f (t)

dt

- 1&t2
=n } |

x

0
f (n x t)

dt

- 1&t2
,

(iii) arcsin(n x x)=n } arcsin x.

3. STEKLOV MEANS

Steklov means provide a way to approximate a given (not necessarily
continuous) function by smooth functions. Here Steklov functions are
defined by means of the addition � .

Definition 3.1. Let f # L1
.[&1, 1] and h # [&1, 1]"[0]. The Steklov

function fh : [&1, 1] � R of first order is given by

fh(x) :=
1

arcsin h |
h

0
f (x� t)

dt

- 1&t2
for x # [&1, 1]. (3.1)

6 MICHAEL FELTEN
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Steklov functions of higher order are defined recursively by

fh, r+1 :=( fh, r)h for r # N, fh, 1 :=fh .

Let us recall that C[&1, 1]/Lp
.[&1, 1]/L1

.[&1, 1] and hence the
Steklov functions fh, r are defined for the space X. Moreover, if f is constant
( f=c) then the Steklov function is also constant ( fh, r=c).

Let D be the differential operator Df :=. } f $ for f # AC[&1, 1]. The
power Dr is defined by the composition D b } } } b D r times. In addition we
define the Sobolev space with respect to D as

Wr
X [&1, 1] :=[ f | f, Df, ..., Dr&1f # AC[&1, 1], Drf # X], r # N.

Throughout, the abbreviation ``(a.e.)'' means that an assertion holds for
almost all x if X=Lp

.[&1, 1], and for all x if X=C[&1, 1].

Theorem 3.2. Let f # L1
.[&1, 1] and h # [&1, 1]"[0]. Then fh #

AC[&1, 1] and

(Dfh)(x)=
(2h f )(x)
arcsin h

for x # [&1, 1] (a.e.).

Proof. Let F : [&1, 1] � R be the following absolutely continuous
function

F(x) :=|
x

0
f (t)

dt
1� t

, x # [&1, 1]=: E.

F has the derivative

F $(x)=
f (x)
1�x

, x # E (a.e.). (3.2)

Let us fix h>0 and x # E. Now we shall derive a representation for the
Steklov function fh by means of F. It is useful to consider two cases.

Case x # Eh . In this case an easy calculation yields the inclusion
[0, h]/Ex . This implies by substitution t [ t � x and Theorem 2.3 that

arcsin h fh(x)=|
h

0
f (x� t)

dt
1� t

=|
x�h

x
f (t)

dt

- 1&t2
=F(x�h)&F(x)

and therefore from (3.2)

arcsin h f $h(x)=F $(x�h)
1� (x�h)

1�x
&F $(x)=

f (x�h)&f (x)
1�x

.
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Case x # E"Eh . Let us split up the interval [0, h] of integration into
the following subintervals

[0, h]=J1 _ J2 , J1 /Ex , J2/E"Ex .

In this case a short computation yields J1=[0, 1 � x] and J2=(1 � x, h].
Since J1/Ex and J2/E"Ex we get by substitution t [ t�x and t [ t � x

arcsin h fh(x)=|
1 � x

0
f (x� t)

dt
1 � t

+|
h

1 � x
f (x� t)

dt
1 � t

=|
1

x
f (t)

dt

- 1&t2
+|

1

x�h
f (t)

dt

- 1&t2

=2F(1)&F(x)&F(x�h)

for all x # E"Eh . It follows from Theorem 2.3 and (3.2) that

arcsin h f $h (x)=&F $(x)&F $(x�h) } \&
1� (x�h)

1�x +
=

f (x�h)&f (x)
1�x

,

which verifies the representation of the assertion. Observing that fh is
absolutely continuous on Eh and E"Eh and fh is continuous on the union
set Eh _ E"Eh=[&1, 1], fh is absolutely continuous on [&1, 1].

Now let h<0. We can trace this case back to h>0 by setting
g(x) :=f (&x) for x # [&1, 1]. Because

fh(x)=
&1

arcsin h |
&h

0
f (x � t)

dt

- 1&t2

=
1

arcsin(&h) |
&h

0
g((&x)� t)

dt

- 1&t2
=g&h(&x),

fh is in AC[&1, 1] with the following derivative

f $h (x)=&g$&h (&x)=&
g((&x)� (&h))&g(&x)

arcsin(&h) } .(&x)

=
f (x�h)&f (x)
arcsin h } .(x)

. K
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The result for higher derivatives is given in

Theorem 3.3. Let f # X, r # N, r�2 and $r :=1�((r&1) - 2 ). Further-
more, let h # [&$r , $r]"[0] and

[a, b] :={[&1, $r],
[&$r , 1],

h>0
h<0

.

Then fh, r # W r
X [a, b] and

(Drfh, r )(x)=
(2r

h f )(x)
(arcsin h)r for x # [a, b] (a.e.).

Proof. It is useful to introduce the piecewise constant function

+h : [&1, 1] � [\1], +h(x) :={+1,
&1,

x # Eh

x # E"Eh
. (3.3)

Later on we show [a, b]/Eh . Because of Theorem 2.3(ii) we have

d
dx

(x�h)=+h(x) }
1� (x�h)

1�x
=+h(x) }

.(x�h)
.(x)

and

D( f (v�h))=. } f $(v�h) } +h }
.(v�h)

.
=+h } (Df )(v�h)

or more generally

(D j ( f (v�h)))(x)=(+h(x)) j } (D jf )(x�h), j # N. (3.4)

Then by (3.4) and Theorem 3.2 we get for j # N

(D j+1fh, j+1)(x)

=(D j (D( fh, j )h))(x)

=(arcsin h)&1 (D j ( fh, j (v�h)&fh, j (v)))(x)

=(arcsin h)&1 (+ j
h(x)(D j fh, j )(x�h)&(D j fh, j )(x)) (a.e.)

9BEST ALGEBRAIC APPROXIMATION
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and

(D j+1fh, j+1)(x)=(arcsin h)&1 ((D jfh, j )(x�h)&(D jfh, j )(x)),

x # Eh (a.e.). (3.5)

Now we are going to prove the following assertion: For r � 2, h #
[&1, 1]"[0] and x # [&1, 1] with

( } } } (x � h)� } } } ) � h

k summands h

# Eh for k=0, ..., r&2 (3.6)

the following equation holds true:

(Drfh, r)(x)=
(2r

h f )(x)
(arcsin h)r (a.e.). (3.7)

We prove this by induction with respect to r. Note that (3.6), k=0, implies
x # Eh and therefore +h(x)=1.

For r=2 by using Eq. (3.5) ( j=1) and Theorem 3.2 we have

(D2fh, 2)(x)=(arcsin h)&1 ((Dfh)(x�h)&(Dfh)(x))

=(arcsin h)&2 ((2h f )(x�h)&(2h f )(x))

=(arcsin h)&2 (22
h f )(x) (a.e.).

Let the statement hold true for a given number r. We have to show for
r+1 that condition (3.6) implies Eq. (3.7). Therefore let us assume that
(3.6) is fulfilled for r+1, i.e. (3.6) holds true for k=0, ..., r&1=(r+1)&2.
This means that Eq. (3.7) also holds true for x�h instead of x (because
of the assumption of the induction). Using (3.5) (note +h(x)=1, j=r) gives

(Dr+1fh, r+1)(x)=(arcsin h)&(r+1) ((2r
h f )(x�h)&(2r

h f )(x))

=(arcsin h)&(r+1) (2r+1
h f )(x) (a.e.)

which proves the stated assertion.
By Theorem 3.2 it is obvious that fh, r # W r

X [&1, 1] and hence
fh, r # W r

X [a, b].
Now we have to check that h # [&$r , $r] and x # [a, b] have the desired

property (3.6). Without loss of generality let h # [0, $r] and x # [&1, $r].
By [&1, 1�- 2]/Eh and |k x $r |�k } $r�1�- 2 for k=1, ..., r&1 (see
(2.5)) we find that x # Eh (therefore [a, b]/Eh) and

10 MICHAEL FELTEN
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x�h # [&1, $r�$r]/_&1,
1

- 2&/Eh ,

(x�h)�h # [&1, 3 x $r]/_&1,
1

- 2&/Eh ,

b

( } } } (x�h) � } } } ) � h

r&2 summands h

# [&1, (r&1) x $r]/_&1,
1

- 2&/Eh ,

thus condition (3.6) is fulfilled. Therefore we have shown that (3.7) holds
true for x # [a, b] (a.e.). K

Theorem 3.4. Let h # [&1, 1]"[0] and f # L1
. [&1, 1]. Then

& f&fh&X�w.( f ; |h| )X and &Dfh &X�
w.( f ; |h| )X

arcsin |h|
.

Proof. Definition of the Steklov function and Minkowski inequality
lead to

& f&fh&X=" 1
arcsin h |

h

0
( f (v)&f (v�t))

dt

- 1&t2"X

�
1

arcsin |h| |
|h|

0
&( f (v)&f (v� t))&X

dt

- 1&t2

�
1

arcsin |h| |
|h|

0
&( f (v)&f (v� t))&X

�w . ( f ; |t| ) X

dt

- 1&t2

�w.( f ; |h| )X (3.8)

and by Theorem 3.2 we obtain

&Dfh&X=
&2h f &X

arcsin |h|
�

w.( f ; |h| )X

arcsin |h|
. K

For later use we need the following special notation: For [c, d]/[&1, 1]
we set

& f &X[c, d] :={
sup

x # [c, d ]

| f (x)|, f # X=C[&1, 1]

\|
d

c
| f (x)| p dx

- 1&x2+
1�p

, f # X=Lp
. [&1, 1]

.
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Theorem 3.5. Let r # N, r�2, $* :=1�((r2&1) - 2) and f # X.
Moreover, let h # [&$*, $*]"[0] and

[c, d] :={[&1, $*];
[&$*, 1];

h>0
h<0

.

Then the function Fh, r defined by

Fh, r : [&1, 1] � R, Fh, r := :
r

n=1
\r

n+ (&1)n&1 fn x h, r ,

has the following properties

(0) Fh, r # W r
X [c, d],

(i) & f&Fh, r&X[c, d]�21�prrwr
.( f ; |h| )X ,

(ii) &DrFh, r &X[c, d ]�21�p(2r&1)
wr

. ( f ; |h| )X

(arcsin |h| )r .

Proof. Let $r and [a, b] be defined as in Theorem 3.3. Because of
$*�$r we have [c, d]/[a, b] and due to |n x h|�n } $*�$r for
n=1, ..., r we have n x h # [&$r , $r] and therefore by Theorem 3.3
fn x h, r # W r

X [c, d] for n=1, ..., r. This yields property (0). Moreover, we have

(Drfn x h, r)(x)=
(2r

n x h f )(x)

(arcsin(n x h))r , x # [c, d] (a.e.). (3.9)

Taking into account that (see (2.3))

&(2r
h f )(v� t)&X [c, d ]�21�p &2r

h f &X , t # [&1, 1],

we find by applying Theorem 2.4

&2r
n x h f &X[c, d ]�21�p :

n&1

k1=0

} } } :
n&1

kr=0

&2r
h f &X�21�p } nr } w r

.( f ; |h| )X ,

(3.10)

which leads in combination with (3.9) and arcsin(n x h)=n } arcsin h (see
Theorem 2.5) to

&Drfn x h, r&X[c, d ]�21�p wr
. ( f ; |h| )X

(arcsin |h| )r . (3.11)

This yields the stated property (ii):

&DrFh, r&X [c, d]� :
r

n=1
\ r

n+ &Drfn x h, r&X[c, d]�21�p(2r&1)
wr

.( f ; |h| )X

(arcsin |h| )r .

12 MICHAEL FELTEN
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Now we are going to establish part (i). Because 1�((r2&1) - 2)�1�(n - 2)
for n=1, ..., r, the inclusion [&$*, $*]/[&1�(n - 2), 1�(n - 2)] holds
true. In view of Theorem 2.5 this implies that

fn x h, r (x)=
1

(arcsin(n x h))r |
n x h

0
} } } |

n x h

0
f (x�[tr� } } } � t1])

dt1

- 1&t2
1

} } }
dtr

- 1&t2
r

=
1

(arcsin h)r |
h

0
} } } |

h

0
f (x�[(n x tr)� } } } � (n x t1)])

_
dt1

- 1&t2
1

} } }
dtr

- 1&t2
r

=
1

(arcsin h)r |
h

0
} } } |

h

0
f (x�[n x (tr� } } } � t1)])

_
dt1

- 1&t2
1

} } }
dtr

- 1&t2
r

for h # [&$*, $*] and each x # [c, d]. We have used the equality

(n x tr)� } } } � (n x t1)=n x (tr� } } } � t1) (3.12)

which is true for t1 , ..., tr # [&$*, $*] because the left-hand side of (3.12)
can be rewritten as a sum with n } r summands and because t1 , ..., tr #
[&1�((r2&1) - 2), 1�((r2&1) - 2)]/[&1�((nr&2) - 2), 1�((nr&2) - 2)]
implies that the associative law of n } r summands is fulfilled (see remarks
concerning (2.1) and (2.2)).

Hence the estimation

f (x)& :
r

n=1
\r

n+ (&1)n&1 fn x h, r(x)

=
(&1)r

(arcsin h)r |
h

0
} } } |

h

0
:
r

n=0
\r

n+ (&1)r&n f (x�[n x (tr� } } } � t1)])

_
dt1

- 1&t2
1

} } }
dtr

- 1&t2
r

=
(&1)r

(arcsin h)r |
h

0
} } } |

h

0
(2r

t r� } } } � t 1
f )(x)

dt1

- 1&t2
1

} } }
dtr

- 1&t2
r
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yields (as in (3.8))

& f&Fh, r&X [c, d]� sup
|h� |�|h|

&2r
n x h� f&X[c, d] .

Combination with inequality (3.10) gives inequality (i). K

Corollary 3.6. The conditions of Theorem 3.5 may hold. Then the
inequalities

(i)
& f&F$, r&X[&1, $*]

& f&F&$, r&X [0, 1] =�2 } 21�prrwr
.( f ; $)X ,

(ii)
&DrF$, r&X[&1, $*]

&DrF&$, r &X[0, 1] =�21�p(2r&1)
wr

.( f ; $)X

(arcsin $)r

hold true for all $ # [0, $*].

Finally we give an estimation of the modulus for smooth functions. It is
a result of Theorem 3.2 and in contrast to the preceding proofs we do not
need the associative law.

Theorem 3.7. For f # W r
X[&1, 1], r # N and $ # [0, 1] we have:

(i) wr
.( f ; $)X�(21�p)r } (arcsin $)r &Drf &X ,

(ii) if r is even then

wr+s
. ( f ; $)X�(21�p)r } (arcsin $)r ws

.(Drf ; $)X

for each s # N.

Proof. We shall use some basic properties of the differential operator D.
With (3.3) and (3.4), j=1, we can write

D( f b {h)=+h } (Df ) b {h . (3.13)

The following can be concluded from Theorem 3.2 and Definition 3.1:

(2h f )(x)=|
h

0
.(x)

d
dx

f (x� t)
dt

- 1&t2
=|

h

0
(D( f b {t))(x)

dt

- 1&t2
.

In abridged notation with (3.13) we obtain

2h f=|
h

0
+t } (Df ) b {t

dt

- 1&t2
.
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By iterating this formula we have

2r
h f=|

h

0
} } } |

h

0
_r } (Drf ) b {t 1

b } } } b {t r

dt1

- 1&t2
1

} } }
dtr

- 1&t2
r

for each f # WX
r [&1, 1], where _r : [&1, 1] � [\1] is a sign function.

Using the Minkowski inequality together with (2.3) it follows that

&2r
h f &X�|

|h|

0
} } } |

|h|

0
&(Drf ) b {t 1

b } } } b {tr &X
dt1

- 1&t2
1

} } }
dtr

- 1&t2
r

�(21�p)r } |
|h|

0
} } } |

|h|

0
&Drf &X

dt1

- 1&t2
1

} } }
dtr

- 1&t2
r

�(21�p)r } (arcsin |h| )r &Drf &X . (3.14)

Taking the supremum over h on both sides we find assertion (i).
A direct consequence of Eq. (3.4) is D j b 2h=2h b D j if j is even. Then

Dr b 2s
h=2s

h b Dr holds true for every s # N and every even r. In combina-
tion with (3.14) we obtain

&2r+s
h f &X=&2r

h(2s
h f )&X

�(21�p)r } (arcsin |h| )r &Dr(2s
h f )&X

=(21�p)r } (arcsin |h| )r &2s
h(Drf )&X ,

which yields assertion (ii). K

4. K-FUNCTIONAL

The K-functional provides an alternative way to characterize the
smoothness of functions in place of the moduli of smoothness above.

Definition 4.1. For f # X and $�0 the rth order K-functional is defined
by

Kr
.( f ; $r)X :=inf[& f&g&X+$r &Drg&X | g # WX

r [&1, 1]]. (4.1)

We show that this K-functional and the modulus of smoothness
wr

.( f ; $)X are equivalent. A lemma is needed first.

15BEST ALGEBRAIC APPROXIMATION
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Lemma 4.2. Let f, g # W r
X[&1, 1], r # N and $* # (0, 1). Then

(i) Dr( f } g)= :
r

k=0
\r

k+ DkfDr&kg.

(ii) &Dkf &X[0, $*]�Mr \& f &X[0, $*]

($*)k +($*)r&k &Drf &X[0, $*]+ .

for k=0, ..., r, where Mr�1 only depends on r.

(iii) There exists a function /: [&1, 1] � [0, 1], / # W�
X [&1, 1] with

/(x)={1,
0,

x # [&1, 0]
x # [$*, 1]

and &Dk/&C[0, $*]�
Ck

($*)k , k # N0 ,

where Ck :=&q(k) &C[0, 1]�q(1) and q(t) :=�t
0 e1�(u(u&1)) du, t # [0, 1].

Proof. Let f # W r
X [&1, 1]. By substitution x=cos t for t # [0, ?] and

the relation

(Df )(cos t)=- 1&cos2 t f $(cos t)=sin t f $(cos t)=&f (cos t)$ (a.e.)

one finds that

(Dkf )(cos t)=(&1)k f (cos t)(k) (a.e.) (4.2)

holds true for k # N0 .

(i) By using the Leibniz formula and (4.2) we have

(Dr( f } g))(cos t)=(&1)r ( f (cos t) } g(cos t))(r)

=(&1)r :
r

k=0
\ r

k+ f (cos t)(k) } g(cos t)(r&k)

= :
r

k=0
\ r

k+ (Dkf )(cos t) } (D(r&k)g)(cos t)

for t # [0, ?] (a.e.). x=cos t yields the statement (i).

(ii) Let f # W r
X [0, ?] and g(t) :=f (cos t) for t # [arccos $*, (?�2)].

Then

g, g(r) # {
C _arccos $*,

?
2& ,

Lp _arccos $*,
?
2& ,

p=�

1�p<�

16 MICHAEL FELTEN
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and by using Lemma 2.1 in [4] with [a, b] :=[arccos $*, (?�2)] and
$*�(?�2)&arccos $*�(?�2) $* we get

&g(k)&p�M(r, k) } { &g& p

((?�2)&arccos $*)k+((?�2)&arccos $*)r&k &g (r)& p=
�M(r, k) } {&g& p

($*)k+($*)r&k &g(r) & p=
for k=0, ..., r and M(r, k)�1, where &v& p denotes the unweighted Lp

norm. Because of

&g& p
p =|

?�2

arccos $*
| f (cos t)| p dt=&|

0

$*
| f (x)| p dx

- 1&x2
=& f & p

X[0, $*] ,

and by Mr :=maxk=0, ..., r M(r, k) and using (4.2) we find assertion (ii).

(iii) Let

q0(t) :={e1�(t(t&1)),
0,

t # [0, 1]
t # R"[0, 1]

.

Then q0 # C�(R). By setting

q1(t) :=\|
1

0
q0(u) du+

&1

} |
t

&�
q0(u) du

we have q1 # C�(R) and

q1(t)={0,
1,

t�0
t�1

.

Thus

q2(t) :=q1 \ t&arccos $*
(?�2)&arccos $*+

fulfills q2 # C�[0, ?] and

q2(t)={0,
1,

t # [0, arccos $*]
t # [(?�2), ?]

.

Finally, let /(x) :=q2(arccos x), x # [&1, 1]. Then

/(x)={1,
0,

x # [&1, 0]
x # [$*, 1]

17BEST ALGEBRAIC APPROXIMATION
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and the inequality $*�(?�2)&arccos $* leads to

&Dk/&C[0, $*]=&(/ b cos)(k) &C[arccos $*, (?�2)]�&q (k)
2 &C[arccos $*, (?�2)]

�($*)&k "q (k)
1 \ v&arccos $*

(?�2)&arccos $*+"C[arccos $*, (?�2)]

�($*)&k &q (k)
1 &C[0, 1]

=($*)&k &q(k)&C[0, 1] �q(1)

since q1(t)=q(t)�q(1) for t # [0, 1]. Obviously / # W �
C[&1, 1]/W �

L p
. [&1, 1]

.
This completes the proof. K

Remark 4.3. An immediate consequence of the proof of [4, Lemma 2.1]
is that we can choose M2=8 in Lemma 4.2(ii).

In Lemma 4.2(iii) we have obviously C0=1. By using q(1)=142.25. . . an
elementary compuation yields that the inequalities C1�3 and C2�12 hold
true.

Now we are ready to state the main result.

Theorem 4.4. Let r # N and

$* :={
1 for r=1

1

(r2&1) - 2
for r�2.

For each f # X and $ # [0, $*] the estimate

1
(2 } 21�p)r wr

.( f ; $)X�K r
.( f ; $r)X�crwr

.( f ; $)X

holds true where

cr={
2, r=1

2a+3b+2Mr(a+b) :
r

j=0
\ r

j + Cj , r�2

and a :=21�prr, b :=21�p(2r&1) and Cj , Mr are defined in Lemma 4.2.

Proof. Let g # W r
X[&1, 1], r # N, be chosen arbitrarily. By using (2.4),

Theorem 3.7(i) and arcsin $�(?�2)$ for $ # [0, 1] we obtain

18 MICHAEL FELTEN
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wr
.( f ; $)X�wr

.( f&g; $)X+w r
.( g; $)X

�(2 } 21�p)r } & f&g&X+(21�p)r } \?
2

$+
r

} &Dr g&X

�(2 } 21�p)r } [& f&g&X+$r &Drg&X ]

for all g # W r
X [&1, 1]. This yields the lower inequality of the assertion.

For r=1 the upper inequality can be verified simply by applying
Theorem 3.4:

K1
.( f ; $)X�& f&f$&X+arcsin $ &Df$&X�2w1

.( f ; $)p .

Let r�2 and $ # (0, $*]. For the upper inequality we shall use the Steklov
functions F$, r and F&$, r of Theorem 3.5. It may be pointed out that the
restriction of F$, r on the subinterval [&1, 0] and F&$, r on [0, 1] belong
to the Sobolev spaces W r

X [&1, 0] and W r
X[0, 1] respectively. Conse-

quently it is our task to construct a function f� $, r # W r
X [&1, 1] which has

the desired smoothness properties on the whole interval [&1, 1].
For abbreviation let us set f1 :=F$, r , f2 :=F&$, r . Then f1 # W r

X[&1, $*],
f2 # W r

X [0, 1] and

& f&f1&X[&1, $*]�a } w r
.( f ; $)X , &Drf1&X[&1, $*]�b } $&rwr

.( f ; $)X ,

& f&f2&X[0, 1]�a } wr
.( f ; $)X , &Drf2&X[0, 1] �b } $&rwr

.( f ; $)X ,

where a=21�prr and b=21�p(2r&1) (see Corollary 3.6).
Now let f� :=/ f1+(1&/) f2=( f1&f2)/+f2 , where / is defined in

Lemma 4.2(iii). Then f� # W r
X[&1, 1] and

f� (x)={ f1(x),
f2(x),

x # [&1, 0]
x # [$*, 1]

.

It must be shown that f� has the desired properties of smoothness on
[&1, 1]. Because of &/&��1 we have

& f&f� &X�&( f&f1)/&X+&( f&f2)(1&/)&X

�& f&f1 &X[&1, $*]+& f&f2&X[0, 1]

�2a } w r
.( f ; $)X . (4.3)

On the other hand, the following estimate holds true:

&Drf� &X�&Drf� &X[&1, 0]+&Drf� &X[0, $*]+&Drf� &X[$*, 1]

�&Drf1 &X[&1, 0]+&Drf� &X[0, $*]+&Drf2&X[$*, 1]

�2b } $&rwr
.( f ; $)X+&Drf� &X[0, $*] . (4.4)
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Using Lemma 4.2(i), (ii) and (iii) we obtain

&Drf� &X[0, $*]� :
r

j=0
\ r

j + &D j ( f1&f2) Dr&j/&X[0, $*]+&Drf2&X[0, $*]

� :
r

j=0
\ r

j + &D j ( f1&f2)&X[0, $*] &Dr&j /&C[0, $*]

+&Drf2&X [0, $*]

�Mr :
r

j=0
\ r

j + Cr&j {& f1&f2&X[0, $*]

($*)r +&Dr( f1&f2)X[0, $*]=
+&Drf2&X[0, $*]

�Mr :
r

j=0
\ r

j + Cr&j {2a } wr
.( f ; $)X

($*)r +
2b } w r

.( f ; $)X

($*)r =
+

b } wr
.( f ; $)X

($*)r

�\2Mr(a+b) :
r

j=0
\ r

j+ Cr&j+b+ w r
.( f ; $)X

($*)r

and in combination with (4.4)

&Drf� &X�\2Mr(a+b) :
r

j=0 \
r
j+ Cj+3b+ wr

.( f ; $)X

$r . (4.5)

Now we return to the proof of the upper inequality of the assertion for
r�2. Taking into account (4.3) and (4.5) we obtain

K r
.( f ; $)X�& f&f� &X+$r &Drf� &X

�\2a+2Mr(a+b) :
r

j=0
\ r

j + Cj+3b+ wr
.( f ; $)X . K

Remark 4.5. Concerning the proof we have also shown that there exist
Steklov functions f� $, r :=f� for $ # (0, 1�((r2&1) - 2)] which have the
approximation property (4.3) and the smoothness property (4.5) on the
whole interval [&1, 1]. This result is an extension of Theorem 3.5.

By making use of Remark 4.3 we get for the second order the following
constants.
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Corollary 4.6. Let f # X.

(i) For each $ # [0, 1�(3 - 2)] the following estimate holds true

1
4 } 41�p w2

.( f ; $)X�K2
.( f ; $2)X�2145 } 21�pw2

.( f ; $)X .

(ii) For each $ # (0, 1�(3 - 2)] there exists a Steklov function f� $, 2 #
W2

X [&1, 1] so that

& f&f� $, 2&X�8 } 21�pw2
.( f ; $)X and &D2f� $, 2&X�2137 } 21�p w2

.( f ; $)X

$2 .

5. APPLICATIONS AND OTHER MODULI

Having proved the equivalence between the modulus and the K-func-
tional, we are now able to establish the fundamental theorem of best
algebraic approximation. The next theorem characterizes the behaviour of
the best algebraic approximation by means of the modulus of smoothness wr

. .
Let us set En( f )X=infpn # P n & f&pn &X where Pn denotes the set of all

algebraic polynomials of degree n.

Theorem 5.1. Let f # X, r # N and : # R with 0<:<r. Then the
following equivalence holds true:

En( f )X=O(n&:)(n � �) � wr
.( f ; $)X=O($:)($ � 0).

Proof. The left hand side is valid iff

En( f b cos)p=O(n&:) (n � �) (5.1)

where En( f b cos)p = inftn # 6n & f b cos & tn& p , &g&p := (�2?
0 | g(t)| p dt)1�p,

p # [1, �), (&g&� :=supt # [0, 2?] | g(t)| ) for 2? periodic functions g : R � R
and 6n is the set of all trigonometric polynomials of degree n. It is well
known that (5.1) is equivalent to

inf[& f b cos&g~ & p+$r &g~ (r)& p | g~ 2? periodic, g~ (r) exists]=O($:) (5.2)

for $ � 0. Concerning (4.2) a short consideration yields that the left hand
side of (5.2) is equal to

inf[& f b cos&g b cos& p+$r &(g b cos)(r)& p | g # W r
X [&1, 1]]

=K r
.( f ; $r)X . (5.3)

Theorem 4.4 completes the proof. K
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The connecting link between the modulus and En( f )X in the above proof
is the K-functional. With the aid of the K-functional we can also compare
the algebraic modulus with the Butzer�Stens modulus.

In [1] Butzer and Stens defined the so-called Chebyshev translation
operator for f # X by

(Th f )(x) := 1
2 [ f (xh+- 1&x2

- 1&h2)+f (xh&- 1&x2
- 1&h2)],

x, h # [&1, 1].

In terms of the difference operator

2� h f :=Th f&f, 2� r
h :=2� h b } } } b 2� h , r times,

the Butzer�Stens modulus of smoothness for f # X is then given by

|r
T ( f; ')= sup

'�h�1

&2� r
h f &X , ' # [0, 1].

We now show that our modulus w2r
. ( f ; $)X of even order and the Butzer�

Stens modulus |r
T ( f; cos $) are equivalent.

Theorem 5.2. Let r # N. For f # X and $ # [0, 1�((4r2&1) - 2)] there
exist constants cr , Cr>0 depending only on r so that

ck|r
T ( f ; cos $)�w2r

. ( f ; $)X�Ck|r
T ( f ; cos $).

Proof. For defining a corresponding K-functional of the Butzer�Stens
modulus we need a differential operator DT . In [1] it is defined by a strong
derivative by means of the Chebyshev translation operator. In [2, Theorem
6] it is shown that DT has the representation

(DT f )(x)=(1&x2) f"(x)&xf $(x), x # [&1, 1] (a.e.) (5.4)

iff the right hand side exists. As usual the power is defined by Dk
T :=

DT b } } } b DT k times. Then the K-functional is defined as

KT ( f ; $2r) :=inf[& f&g&X+$2r &Dr
T g&X | Dr

T g exists in X], $�0.

The equivalence between this K-functional and |r
T ( f; cos $) has been

given by Butzer and Stens in [1]. Observing that DT f=D2f holds true
because of (5.4), one has KT ( f ; $2r)=K 2r

. ( f ; $2r)X . Because of the equiv-
alence of K 2r

. ( f ; $2r)X and w2r
. ( f ; $)X for $ # [0, 1�((4r2&1) - 2)] (see

Theorem 4.4) we have established that w2r
. ( f ; $)X and |r

T ( f ; cos $) are
equivalent. K
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There are other moduli of smoothness which are suitable for character-
izing best algebraic approximation. In their book [5] Ditzian and Totik
measured the smoothness of functions in weighted Lp spaces on [&1, 1] in
terms of the main part modulus of smoothness. For f # Lp

.[&1, 1] the
main part modulus is given by

0r
.( f, $)X= sup

|h|�$
&2� r

h. f &L p
. [&1+2r2h2, 1&2r 2h2] , .(x)=- 1&x2,

where (2� r
h f )(x)=�r

k=0 (&1)r&k ( r
k) f (x+r(h�2)&kh) if x, x+r(h�2)&

kh # [&1, 1] and (2� r
h f )(x)=0 otherwise. Using suitably defined K-func-

tionals they were able to prove that En( f )X=O(n&:) is equivalent to
0r

.( f ; $)X=O($:) (0<:<r). For the unweighted space C[&1, 1] the
main part modulus 0r

. can be replaced by the Ditzian�Totik modulus

|r
.( f ; $)�= sup

|h|�$
&2� r

h. f &�

which is equivalent to the specific K-functional

K� r
.( f ; $r)�=inf[& f&g&�+$r &.rg(r)&� | g (r&1) # AC[&1, 1]].

Because of D1f=.f $ and Theorem 4.4 the moduli of first order w1
. and |1

.

are equivalent. This does not hold true for higher orders r�2. Let
f # Pr&1 "P0 then K� r

.( f ; $r)�=0 (because .rg(r)=0 for g=f ). But with
the aid of (5.3) and the fact that (g b cos)(r){0 for g=f one finds
Kr

.( f ; $r)C[&1, 1] {0. Therefore wr
. and |r

. are not equivalent for r�2 on
C[&1, 1]. Consequently wr

. , r�2, is also not equivalent to the {-modulus
([9]) which is equivalent to |r

.( f ; $)� on X=C[&1, 1]. The question is
still open as to whether wr

. is equivalent to 0r
. on the weighted spaces

X=Lp
.[&1, 1].

Finally, it should also be pointed out that for unweighted spaces
Lp[&1, 1] no comparison is possible because w r

. is not well-defined on
Lp[&1, 1] which can be seen as follows.

Lemma 5.3. Let p # [1, �) and h # [&1, 1]"[0]. Then

2h(Lp[&1, 1])/3 Lp[&1, 1].

Proof. Without loss of generality we can assume h>0. Let us define the
function

f : [&1, 1] � R, f (x) :=\1� (x � h)
1�x +

1�p

.
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A short calculation yields

( f (x))p=
|- 1&x2

- 1&h2+xh|

- 1&x2
= }- 1&h2+

xh

- 1&x2 }
from which we obtain

& f & p
p�|

1

&1
- 1&h2 dx+h |

1

&1

|x|

- 1&x2
dx

=2 - 1&h2+2h } [&- 1&x2]1
0=2 - 1&h2+2h<�,

i.e. f # Lp[&1, 1]. Let us assume that 2h f # Lp[&1, 1]. It will be shown
that this assumption gives a contradiction. The hypothesis implies that
f (v�h) # Lp[&1, 1] and by substitution x [ x � h and x [ x�h respec-
tively we conclude

& f ( v�h)& p
p=|

1

&1�h
| f (x)| p 1� (x � h)

1�x
dx+|

1

1�h
| f (x)| p 1� (x�h)

1�x
dx

�0

�|
1

0

1� (x � h)
1�x

}
1� (x � h)

1�x
dx

=|
1

0 \(1&h2)+h - 1&h2 2x

- 1&x2
+h2 x2

1&x2+ dx

=1&h2+h - 1&h2+h2 } _&x+
1
2

log
1+x
1&x&0

1&

.

Because of assumption h{0 we have & f ( v�h)& p=� which is a con-
tradiction to 2h f # Lp[&1, 1]. K

Lemma 5.3 shows that the difference operator (2h f )(x)=f (x�h)&f (x)
given in terms of the algebraic addition � is not suitable for defining a
modulus of smoothness for unweighted Lp spaces on [&1, 1]. The ques-
tion is open as to whether there exists an algebraic operation �� defined on
the unit interval [&1, 1] which is suitable for measuring smoothness in
order to characterize best algebraic approximation.
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